If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2+141x-285+5x-5=0
We add all the numbers together, and all the variables
16x^2+146x-290=0
a = 16; b = 146; c = -290;
Δ = b2-4ac
Δ = 1462-4·16·(-290)
Δ = 39876
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{39876}=\sqrt{4*9969}=\sqrt{4}*\sqrt{9969}=2\sqrt{9969}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(146)-2\sqrt{9969}}{2*16}=\frac{-146-2\sqrt{9969}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(146)+2\sqrt{9969}}{2*16}=\frac{-146+2\sqrt{9969}}{32} $
| 7.2x=300 | | 170=69-x | | 3x^2+9x+11+4x-7=0 | | 5/3x+x+4x+x+5/3x=300 | | 4x^2-24-20x=0 | | 3x^2+108-36x=0 | | 4x^2+96+40x=0 | | 19x+99=50 | | 4x^2-96+40x=0 | | C=10/6(p)+4/12 | | 2x^2+10-12x=0 | | 8a*36=18a | | -2(19w-10)=-2(18w-10)-2w | | 4(19+6z)=-3(-4-8z) | | 2(5d+5)=10+10d | | -20+18u=-2u+5(4u-4) | | 20-14k=-7(2k-2)+6 | | 1+2w-9=4w+18 | | 50-10x=14+8x | | 2(7j+2)=13+13j | | 17+20v=11v+12v-16 | | -19+12-7g=-7-7g | | 3(p-6)=9p | | 16f-3-12=-15+16f | | 5(x/4-3)-2=-7 | | 20b-8=2(8b-)+4b | | -10-17d=2-12-17d | | -7s+17+13s=-3+4s | | -3t-4=-4-4t+t | | 170-4x=15-3.5 | | 5(u+2)-2u=37 | | T=75/500x0.05 |